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1 Summary

In this work, the investigators explored the area of neural-nets for object recognition
and also investigated hardware issues in the optical implementation of neural nets.
The approach underlying the design of networks was that of optimization theory to
both specify the problem and the network for its solution. These networks differ con-
siderably from simple pattern matchers (such as the Hopfield content-addresssable
memory) where an iconic version of the pattern itself is stored. Instead, the net-
work implements a form of model matching in which the model base is organized as
structured graphs, the input data is organized , again by the optimization procedure,
into similarly structured graphs by the neural net, and recognition is accomplished
by a form of graph matching. The model base is organized hierarchically in that
both compositional (whole-part) and specialization (class membersh.p) notions are
captured by sparse matrices which serve as pointer structures in the objective func-
tions. This notion of design allows for a uniform style of addressing both low-level
visual problems and more traditional high-level recognition problems. Our main ex-
periments were conducted in visual domains involving the recognition of simple stick
figures. One version in which the coding of input data into structured graphs was
done as a preprocess achieved considerable success. A more ambitous experiment
in which this “perceptual organization” is done as part of the optimization achieved
limited results, but served to highlight areas for further progress. Though learning
was a subsidiary goal here, progress was made in the areas of CMAC contollers and
delineations of learning tasks for the graph matching circuits mentioned above. Also,
earlier work involving aspects of more traditional associative memories was contin-
ued, with progress achieved in the specification of optimal architectures and objective
functions for outer-product style memories. Optical implementations were concerned
mainly with the problem of implementing ever more general interconnect patterns.
The main problem here is to use optics to form a fixed interconnection network be-
tween layers of 2-D nodes (neurons). Two means of using spatial multiplexing to
effect a 4-D interconnect between two 2-D node planes are used: multifaceted holo-
grams and multichannel incoherent imaging systems. Nonlinearities are implemented
electrically after detection of the light intensity. Computer simulations and exper-
iments with e-beam fabricated holograms designed to code an associative memory
and a winner-take-all network reveal so far a host of technical problems resulting in
a limited achievable accuracy for the connection weight.




2 Introduction

The following is a summary of progress accomplished over the first year of the two-
year grant period. A number of papers, Tech reports, etc. are referenced at the end
of this 1-year progress report.

The overall theme of the project was the investigation of issues in the organization
of visual memory. The project was pursued at the theoretical level as well as at the
level of hardware organization, where issues in the optoelectronic implementation of
these memorie were pursued.

This project grew out of earlier work in which an approach to object recognition
as an associative memory problem was pursued. The big problem with this earlier
approach is that objects must be recognized regardless of changes in position, ro-
tation, scaling, and a host of other deformations. One may store iconic patterns
directly in 2 memory and design such invariances directly into the connection pat-
tern, but the circuits quickly become complicated. We follow the approach taken
in traditional computer vision systems and store relational models instead of iconic
models into the circuit, and demand that the input data itself be organized into such
a relational structure and optimally matched to the “nearest” model. Relational
models are designed to automatically capture the desired invariances; the perceptual
organization of input data into relational structure proceeds simultaneously with
the matching process. Like some associative memory approaches, this one also uses
objective functions for specification of the problem and design of the circuit. The
optical implmentation aspect is largely independent of the distinction between the
associative memory approach and the optimiing graph matching approach. In each
case, the main task is to use the capabiliies of optics and electronics to for general
interconnect patterns and implemnbt nonlinearities.

Below we list a summary of accomplishments completed during the first year of
the grant period. This is follwed by a more detailed discussion.

3 Summary of Completed Research

Below is a succint summary of accomplishments of the first year. Each item is followed
by a reference to an appropriate paper or technical report that gives a more detailed
account.

¢ We implemanted two networks for simple object recognition and performed
analysis and simulation experiments. Each of these successfully matched sim-
ple stick figures to a database of models. It was able to find multiple objects
and specializations of objects. One version [4] used an unconstrained optimiza-
tion technique for net dynamics; the other incorporated “Lagrange multiplier
neurons” to implement hard constraints [14). In each case, the difficult task




was made tractable by hand coding the input data into relational structures
suitable for matching. The resulting objective functions were quadratic and the
net worked well.

A more difficult version of the above task was attempted. Again, the idea is
recognize simple stick figures, but now the network, as part of the optimiza-
tion process, had to group input sticks into potentially meaningful relational
structures. This resulted in 5th-order objective functions. While success of the
network was limited, much was learned. Results are reported in (8], [9], and

[6].

A version involving recognition of 3D objects was completed. This {15] network
recognizes 3D-stick figures from a 2D projection.

A paper discussing the general approach to object recognition espoused by
us and collaborators was invited for publication by the new journal Neural
Computation [6].

E-beam multifacetted holograms for optical neural net interconnects were fab-
ricated for an associative memory problem and a winner-take-all problem. The
optical results were compared to results from a simulation program written to
model sources of error in the e-beam scheme. This resulted in some under-
standing of the engineering problems associated with the optical interconnect
scheme. Results and analyses are shown in this progress report.

In support of the optical effort, we completed a study on performance of outer-
product associative memories. One result {1] showed that versions with self
interconnects perform better than those without; another [2] showed that a
version with positive only interconnects can be made to perform well. Both of
these results have ramifications for optical schemes.

An additional study on optimal architectures for outer product associative
memories was completed [13]. A universal architecture that makes optimally
efficient use of hardware is proposed in this study.

Though learning hasn’t been a major theme of the work, some progress was
made in initial studies for learning distance metrics in the graph matching
networks mentioned above. In an unrelated study, a fast, general purpose,
supervised learning algorithm based on CMAC models was devised [11] {12].
On a popular test case, it greatly outperforms backprop.




4 Discussion

The work splits into three categories: networks for model matching, optical imple-
mentations, and analyses of associative memory. The optical work was carried out
as a subcontract at the University of Arizona and is discussed in a self-contained
section.

4.1 Networks for model matching

Neural net tasks for visual recognition is often thought of as a variant of some simple
pattern matcher, such as the the Hopfield associative memory or a simple perceptron.
These schemes are limited in two ways: “objects” are represented iconically instead
of in the more efficient manner of relational structures, and there is no provision for
efficiency in search by using notions of hierarchy. Of course, both of these ideas are
common in traditional computer vision, but here, we propose a way of incorporating
these crucial notions into a neural-net paradigm.

We introduce an optimization approach for solving problems in computer vision
that involve multiple levels of abstraction. Specifically, our objective functions can
include compositional hierarchies involving object-part relationships and specializa-
tion hierarchies involving object-class relationships. The advantage of hierarchical
organization is that it makes the search process involved in image interpretation eas-
ier to express and more efficient. The large class of vision problems that can be
subsumed by this method includes traditional model matching, perceptual grouping,
dense field computation (regularization), and even early feature detection which is
often formulated as a simple filtering operation. This raises the possibility of solving
within a single vision system both low-level and high-level problems in a uniform
manner.

Our approach involves casting a variety of vision problems as inexact graph match-
ing problems, formulating graph matching in terms of constrained optimization, and
using analog neural networks to perform the constrained optimization. Figs 1 and 2
illustrate the basic idea for a simple graph matching problem.

Our extension of graph-matching to model-based object recognition involves re-
garding one of the graphs as a “model” graph, which is supposed to represent the
knowledge of shapes within the system, and the other graph as a “data” graph which
is obtained from the current input data to the system. The model-side nodes are
simply called “models” and data-side nodes are called “frames” (denoted F;), which
are collections of analog neurons representing parameters of an object (and are de-
noted F;,, where s indexes the parameters of a single frame). The instantiation of
a model in the image is expressed by “turning on” a match neuron M, between a
model a and its matched Frame F;. We will refer to such a network of frames and
models as “Frameville”. Basic notions of Frameville are discussed in Figs 3,4.5.6




Exact Graph Match Via a TSP-like Network

Represent a graph by a sparse binary matrix whose :jth element
is unity if node i is connected to node j, and is zero otherwise. Given
two graphs represented by G, and g;;, introduce a match matrix
M,;, where 0 < M,; < 1, to represent the correspondence between

nodes o and z .

A simple objective function maximizes the number of local con-
sistency rectangles :
El(M) = — 5Z;GaﬁgijMaiMﬁj- (1)
ajl 1

while other terms reflect the constraint of one-to-one matches be-
tween nodes:

Ex(M) = 2(S Mai = 1)” + £(S Mai — 1)° (2)

] t

and limit the values of the match neurons to the desired range:
My —
B(M) = T [ g7 (z)ds. (9

where g is a sigmoidal gain function.

Graph matching is performed by a gradient descent procedure
on the combined objective £ = E; + E; + I3, or by a constrained
optimization technique involving the introduction of Lagrange mul-
tiplier neurons. |
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| 'Intro.ducing Frames

For model matching, G,3 becomes INA,g denoti’nvg part-whole
relationships-among models o and 3. Likewise g;; becomes ina;;
denoting part-whole relationships between data nodes.

The data nodes themselves become “Frames” which represent vi-
sual abstractions in terms of a few parameters. The ¢’th frame, F,
contains “slots” for analog parameters Fj; and §r1ay participate in
part-whole relationships (¢na;;, now variable) with other frames F’J
The process of dynamically employing a frame to represent an ab-
straction required by data is called “allocating” the frame.

The graph-matching object.ve E)(M) again maximizes the num-
ber of consistency rectangles, but consistency now involves the vari-
able ina litks and model-specific criteria H:

Ei(M,ina, F) = = T ¥ INAqginai; Mo, Ms; HOO (Fi Fy). (4)
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Figure 2: Example of Frameville rectangle rule.(a) Example object, a plane, consists
of parameterized parts fuselage and wings. (b) Shows the rectangle relationship between
frames (triangles) representing a wing and the fuselage of a plane. Circles denote dynamic
variables, ovals denote models, and triangles denote frames. For the plane and wing models,
the first few parameters of a frame are interpreted as position, length, and orientation. (c)
Shows the sibling competition among parts. The match variables along the dotted lines
(Msg and M, 7) are suppressed in favor of those along the solid lines (M2 and Ms 7).
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FRAMEVILLE MATH

Objective:
Data and models must be consistent ...

Ei(M,ina,F) = — © ¥ INAgsina;; Mo Mg; HY? (Fi, ). (5)

«d 13

Constraints:
Unique matches for the parts of an object ...
; INA s My — ?ina,-ngj =0 (6)
Zi: mna;iMai — %‘, INA,3M3; = 0. (7)
Unique specialization through discrimination tree ...

My — 32 IS4 3Mp; = 0. (8)
B

M and ina make decisions ...

M,;(1-My) =0

ina;j(1 — tna;;)

I

o
‘©
S’

(or use standard analog gain term.)
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Introduction of a Specialization Hierarchy

Indexing into a large database of models may be made efficient
by the introduction of a specialization hierarchy. We index the
models (and the database of metrics H*# ) by introducing a static
graph of pointers IS4,5 to act as both a discrimination network
and an inheritance hierarchy. Note that property inheritance is
automatically achieved by allowing the same frame to match to a
model and just one of its specializations:

My — %IS‘L;,{)M/H = 0. (10)
The additional verification of properties specific to the specialization

is simply expressed as additional model-specific constraints involv-
ing the parameters.
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The incorporation of a compositional hierarchy and a specialization hierarchy on
the model side is achieved via graph-arcs called INA links and IS4 links respectively.
The objective function includes terms representing a simultaneous match of a model
to an object (on the data side) and the parts of the model to parts of the object in a
consistent fashion. An objective function may be inherited through the IS4 links from
a model to its specializations and there may be an incremental objective function for
each of the specializations. Numerical parameters are represented by using analog
neurons and the verification of metrical relationships involving these parameters is
achieved by corresponding consistency terms in the objective function.

In order to perform perceptual organization, the data-side compositional hierar-
chies must be dynamic. To achieve this we introduce dynamic tna links on the data
side. The tna links connect more and less abstract frames, and their evolution cor-
responds to a search for a perceptual organization consistent with the model graph.
Specialization is implicitly achieved by the simultaneous match of a frame to a model
and to one of its IS4 specializations.

The next few figures show experimental results. We note that the “Stickville”
simulations of figs 7 and 8 do not involve grouping the input sticks into data side
graphs; this is done by hand to make the task easier for the network. The resulting
objective functions are quadratic. As seen in figure 8, data in the form of a simple
stick figure of a jet is presented to the network. Models of mammal, plane, jet are
stored. Both data and object relations are encoded in the connection strengths of the
network; in particular H*#(F;, F;) equals a number measuring the quality of match
of data items ¢ and j given that ¢ is identified with model a and 5 with 8. Shown is
the state of the match matrix at intermediate and final states. Note that both plane,
and its IS4 specialization (jet) have been found.

The next series of experiments is depicted in Figs 9,10,11 and is described in
extensive detail in [8]. The parameter evaluations are not precomputed as before,
but are computed dynamically. Translation invariance is achieved by using a specified
form of the metric. One unsurprising result is that the network must be given a hint
in the form of an initial state in which an abtraction frame containing the parameters
of a main part is already successfully matched.

Extensive experimentation and analysis continues with this domain. A central
theme that is pursued here is the following: How can the database be organized so
that the search process is more successful? These and other aspects are duscussed in

8|.
° The networks discussed here were hand designed in that both the model base and
the definition of the match metric H*? were chosen in an ad hoc manner. It may be
possible to improve the performance of a Frameville network by supervised learning.
Learning the database is quite difficult, but improving H?? for greater discrimination
may be possible. A possible strategy would be to present the network with examples
of fully matched models (all match variables set). The match metric H*# is then




Experimental Results: Stickville

We attempt recognition in Stickville, a simple domain of con-
nected assemblages of linear “sticks”. There are severe restrictions

here:
e The data groupings are precomputed, so ina;; are constant.
e The 1na matrix represents a tree. The links are undirected.

e Parameters are precomputed. For an attached pair of sticks
(ina;; = 1), we use relative size, angle, and location of attach

point.

Therefore, the only dynamic variables are the match neurons M,;
and the objective function is quadratic.

The figure below shows experimental results.
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Experimental Results: TLville

We experimented with the full Frameville machinery in a charac-
ter recognition task. The model base is a two-level compositional
hierarchy with characters (“I” and “L”) composed of unit-length
segments in the manner of a standard LED display.

e Frames contain three slots: the z, y,  coordinates of the segment
which the frame represents.

e Abstraction in TLville: High-level frames (those matched to an
entire character) contain slots for coordinates of a designated
main part.

e Terms in H° like (z; — z; — Az®)? enforce translation invari-
ance through analog computation. Other invariances may be
similarly implemented.

e No IS4 specialization mechanism.

e To augment equations 6 and 7, we add penalty terms

Z Z MaiMa'i, Z Z ngMﬂlj, Z Z ina,-jina,-;j. (11)

la a'#a 18 B'#83 JT'#

Thus the dynamic variables are M,ina, and F' and the resulting
objective functions are of order five.

The following figures show experimental results.
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(a)Input data consists of unit-length segments oriented horizontally or ver-
tically. The task is translation-invariant recognition of three segments forming a “T"
junction (e.g. sticks 1,2,3) or an “L” (e.g. sticks 5,6,7) amid extraneous noise sticks.
(b)Structure of network. Models (represented by ovals) occur at two levels. IN4 links
are shown for a “T". Each frame (represented by a triangle) has three parameters: two
position coordinates and one orientation coordinate. Also shown are match and ina links.
The bold lines highlight a possible consistency rectangle.
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tna matrix indicates grouping of ten low-level frames into three high-level frames. The
parameters of the high-level frames are displayed in the matrix F}; of linear analog neurons.
The parameters of the low-level frames are held fixed and are not displayed. (a) Initial state
of network: All neurons set to small random values except those corresponding to matching
of main parts. (b) Final state corresponds to successful match of the two junctions wnd
their parts.
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changed. For example, it may be desirable to make its value zero or negative for
positive training examples and have it assume a large positive value for negative
examples. The measure governing the change of H might be the separability of the
clusters of energy values reported by the analog computation term for positive and
negative examples. The match metric itself could be modified by representing H in
parameterized form and descending in the parameter space.

4.2 Work on associative memory and learning

The model matching networks described above differ from the more familiar asso-
ciatve memories well known to neural netters, but since associative memory serves
as a test problem for optical implementaions, several problems in analysis presented
themselves. In addition, we continued some previous work in new types of associative
memory.

It turns out that a Hopfield style ACAM (Associative Content Addressable Mem-
ory) may be implemented optically as projection of a binary input state onto a set of
stored memories to obtain a set of inner products, followed by summation of stored
memories weighted by the innner products, followed by thresholding. With this kind
of optical architecture, it turns out to be convenient to use connections that are
positive only instead of bipolar, and to not restrict onesself to eliminating self con-
nections from the network. These two resrictions (bipolar nodes, non self connected
nodes) are present in the Hopfield model, but in two papers [1] [2] we show how to
remove them. In particular, we show through statistical arguments that the model
with self-connected nodes actually works better than the one with without these, and
that an all-positive network is possible if the threshold point is selected judiciously.

While the outer-product memories have been well studied and implemented opti-
cally, there is reason to prefer alternative models that use simple template matching
in conjunction with a layer of internal decision units which compete to perform a
winner-take-all (WTA) function. We refer to this a a unary model. There are 3
reasons for our interest: WTA networks are modules of the model-match networks
described earlier, they constitute an implementation challenge for the optical effort
(see next section), and unary models are interesting in their own right.

With this latter reason as motivation, we completed a study of unary models
[13] and showed the following: We present a universal architecture for standartd
auto-associative memory models which makes optimally efficient use of hardware.
This architecture is described by a bilinear energy functiom. Bot outer-product
and unary models can be viewed as special cases of this unversal architecture. The
universal architecture uses only the minimal number of binary connections required
by information theory to encode the stored memories. For higher order outer product
memories, the need for large numbers of internal “product units” is eliminated.

In the previous section, an approach to learning in Frameville was discussed but




no committment to a given learning algorithm was mentioned. Reseach on learning,
though somewhat peripheral to the immmediate goals in this contract, was con-
ducted. In {11} [12], a learning algorithm in whuich a system learns to approximate
mappings by constructing an interpolating lookup table on a lattice of points in the
input space.




4.3 Work on optical implementation

This section describes work on optical implmentation performed as a subcontract
at the University of Arizona. This progress report was written separately by the
subcontract investigators. Figure numbers refer to figures within this report. '




AFOSR Progress Report

Db jective:

The cokjective of thiz portion of the research program is to inuvestigats
and develop the implementation of newral—-rnetwork architectures via opt—
ical technology. The strength of optics for thiz application lies in its
ahility to perform communication, and so the primary effort iz directed
at irmplementation of the massive interconnections regquired of neural
tistuork.

Approach:

The general approach to model—based recognition of wizual patterns is
that of optimization wia a rewal network. In the simplest formulation of
this type of problem, the interconnection strengths are known and fixsed.
Thus, it is feasible to implemsnt the interconnections wia a fixed nona—
daptive structure. In terms of optical irmlementation, this fixed struc—
ture iz easier to realize than an adaptive crne, atid zo the present
effort is directed at exploration of the capabkiliez and limitations of
fired opticsl intercornects. A furndanmental isswe concernz the number of
tnodes and the rumber of intercomnections that will ke reguired for
realistic problems. bl have chozen to consider nodes laged out o 5 2-D
array to maxirmize the ramber of nodes that can be realized. The asso-
ciated 4—D interconnection matrix iz implemented via zpatial multiple -
ing, essentially producing a Z-0 array of 2-D interconnections all
scoded on one large 2-D media.

Two methodz of optical interconnection are being investigated, multifa—
cetted holograms and multichannel incoherent imaging systems. In the
former, 3 hologram, hereafter referred to as 3 subbologram, is dedi—
cated to each rnode to encode the connection pattern from that nods to
a2l the othsr rodes in the system. & 2-D array of these subholograms
forms the composite hologram. The use of Fourier transforrm holograms
allows 2 simple encoding, where communication to a particular node is
associated with a particular spatial frequency Grating> in the subholo—
gr-am and iz independent of the subhologram's spatial position in the
cornposite holograrm. The hologram can be desighned wia any of a number
of binary encoding schemes and is fabricated via e—kbeam lithography.

In the muttichanne!l imaging systerm approach, there are two geometriss.
In one, like the subholograrm idea, a subtransparency encodes the con—
nection pattern from a particular node $o the entire node array, and an
artray of these, one for each node, meshed together im a 2-D array
formz the composite transparency. AR areay of imaging systems, ore for
eaczh node, project the individual subtransparencies to the comron nods
input planse. This array of imaging systems can ke implemented either
via a lensiet array or via a simple shadow—casting optical systern. In
the other geometry., the rmultichanmel imaging system (ensiet arrayr
forms a zpatially replicated image of the node array. Each subtranspar—
ency ercodes the connections from all the nodes to a particular nods.
Fgain an array of thesze subtransparencies forms the composite tram-—
sparency. Integration of the light emerging from a subtransparency rep-
resents the value of a hode imput.

Implementation of the nonlinear node furction directly wia optics iz it -




ficult, A dedicated electro—optical rnode plane, consizting of am arvay of
optical detectors, nonlinear amplifiers, and light souwrces, appeats to ke
the best approach. The light sources can be either directly driven lazer
diodes or a spatial light modulator. Difference amplifiers can be incor—
porated in the electronic chain if kbipolar signals are regquired. This
type of structure iz compatible with any of the optical intercomnsction
methodologies being considered. I our work, the node function is per—
Formed wia video detection, digital proceszing of the digitized wideo
sigral, and display on a video monitor. For holographic interconnection,
a liguid crgstal light valuve is used o convert the wvideo display into 3
coherent arplitude—modulated platie—wave,

Aocomprlishments:

A Zimple aszociative memory problen bas been defined to test the oper—
atiorn and performarce of the holographic interconnection method. Threse
states, an A, 2 B, and an , are stoared in a simple autoassociative
menmory structure. The node field consists of an 8x8 array of binary
(2,12 walusd nodes. The comnection hologram consists of an 2:2 array of
subholograms, each encoding the &4 interconmections from its node to
the other nodes. MHetworks with both kipolar arnd anipolar connection
strengths were investigated. A detailed statistical anslysis reveals that
3 zystem with unipolar intercornections can actually perform better
tharn ore with kipolar intercornections (zee preprint "Statistical Ferfor—
mance of Duter—Product Associative Memory Models" submitted to Applisd
Opticss.

A winner—take—all JdA4TAY network was alzo desigred. This network finds
the raxinmam of 1€ analog ioputs. Again an S:2 field of nodes s used.
Sixteern nodes are used as input nodes, =istesn are used a= output
tuxcde=, and the rest are used Lo represent the result of two~—input comm—

parizons. Ideally, the maximum analog value should appear on the cor—
responding output node and all other output nodes should ke zero. The
interconmections for this type of network are sparse and consists of
stricthy +1 and —1 connections. On the other hand, the amalog node wvalues
and the interconnection strengths are reguired to ke very accurate for
proper functioning of the network. Theze thwo problems, the azsociatiuve
mermory prablern and the WTA problem, placze very different regquirements
on the network hardware,

A hotogram was designed and fabricated to implement the interconnec—
tiors of the two network problems dezcribed abouws, There are seuveral
steps inwvoluad in designing the hologram. For bipolar connection pat-
terns the conmnection matrix iz split in two parts, the positive part and
the negative part. Each must be encoded in a seperate hologram, the
positive part directly and the negative part with a sign reversal so that
it too iz positive. The unipolar connection pattern will be generated by
the hologram as anm optical intensity distribution in the output plane ot
the oprical system. The hologram, howeose, produces an optical anwyoli-
tude i the output plane. The squars root of the connection pattern =st:=
the magnitude that should ke produced. The phase, however. is arbitraryg
and iz a degree of freedom inherent to the design process. The hologr an
transmiszion should encode the Fourier transforrm of the complex optic sl
arnplituds i the output. This Fourier transform is in general a comple -
valued function. The hologram transmizzion, however, must be kinary
valued if it iz to be fabricated by e—beam lithography. R number of




standard teckniques exist for this encoding process. Rl essentially
sarpeert the comple: furetion into 3 real function by spatial carrier
modulation, cornvert the resl function into a positive real function by
addition of a kias., and encods the zampled magnitude of the poszitiuve
function by area weighting of the transmissive portion of the holograrm.
The holograrm produces the desired result in a spatially offset region of
the output plane with a large on axis bias term. Qur particular kologran
was encoded asz a t_-maru tramsmission pattern using a technigque
described by Dallas?

e ot the rmajor issues for optical interconnects iz the achiswabkle
acouracy. A 3 means of investigating this izsue, a number of individaal
test subholograms whete also fabricated on the e—beam mask. One of the
tast holograms encoded the connection pattern dipicted in fig. 1. This
cormection pattern was used extenzively in evaluating the performance
of the khologram.

The interconnection pattern produced by a computer—genetated hologram
is newer pertect. AL encoding methods result in some degres of 2rror in
the resulting comnection pattern. Alzo, the spatial resolution of the e—
bearn system sets a limit to the dynamic range that can ke achisved via
the area encoding. This too affents the accuracy of the result. The
phase function of the ogtical amplitude, chogen during the holograr
dezigrn process, influences the distribution of energy in the hologram
and the effective utilization of the limited dynamic range. Holograms
with both zero phase and random phase were encoded. Yery seuvere
prolems can result when the finite extent of the hologram causes 3
smearing in the output plane. With random phase coding, the s=mearing
can cause intertference effects that lead to large error. The smearing
effect alzo causes the energy from the strong central kias to spread
into the area where the intercormections are being rmade. The optical
distribution in the output plane produced by the zero phase and the
random phase holograms are shown in fig. Z2a an 2k respectively. Neithet
result iz particulariy good. Clearly, there is a problem with fthe =mear—
ing from the central bias. The random phase hologram produces a higher
diffraction efficiency but at the expense of increased error.

Computer simulation of the hologram performance corroborates the
story told above. The computer simulation was done by an exact Fourier
transform of the computer—gensrated hologram. A sampled wersion of
the output is shown in fig. 3. where fig 3a corresponds to the zero
phase helogram and fig. b to the random phase hologram. These can ke
compared directly to the results in fig. 2; good agreement is noted. Thisz
iz encouraging for it allows the computer =simulation approach to ke
used to test alternative hologram desigrns without resort to expensive
and time—consuming fabrication. For example, one solution to the prob-
lerm of smeared light from the on—axizs biass Ilqht is to make a binary
phasze holograrm frorm the binary transmission hologram. A kinary phase
hologram has two transmission values of 1 and 7 rather than 1 and ©. It
there are edgual areas of the two tramsmizsions, the on—axis bias =ignal
iz identically zero. A simulation of thiz hologram produces the result
shown in fig., 4, a clear improvement auer the kinary tranmission cass

1. BE. R. Frieden, ed., The Computer in DOpti-—
cal FResearch, Springer—-4Yeriag, 1320.




We hawe attermpted to make binary phasze holograms by bleaching photo—
ghaphic copies made by contact peinting, This appecackh has ot et with
ruch success. It iz very difficult, with Bleached holograms, tao obtain
uriform phaze independent of spatial frequsncy.

The full azszociative memory retwork was attempted wging the slectro—
optic node plane and the holographic interconnect. The errors in the
conrmection pattern resutted in poor pertformence for the associative
rmermory problem. The encoded states of the network were mot fuliy
stahte, though the patterns were stable erough o produces recognizablie
characters. ble are =till investigating the bhehavior of these opticaliy
interconnected networks.

Future Directions:

Sewveral areasz will be investigated in an attempt to inprowve the perfor—
matize of the holographic interconnects. Apodization of the subhologranms
will e explored a=s a means of confining the ensrgy and reducing the
deleterious effects of zrmearing. RIzo, inocreasing the seperation of the
nodes and the seperation of the inter zonnect region from the central
kias can be used to improve performance. Theres iz an obvious tradecty
here between the accuracy of the intercortection arnd the rnurmber of in—
terconnects that can be realized. The izzus of accuracy in network in-
terconnections iz being studied theoretically in an atterapt to delineats
exactly what the accuracy requirementz are for wvarious kinds of neural
networks.

Furtbter inuestigation of the what phase function should be specified for
the cupat gmplitude will ke done. It iz certainly pozsible that zome det—
erministic phaze function is preferakle o sither the zero phaze of the
rrardom phase =olutions, He will alzo sxpdore the performance of wvariogs
hzlogram encoding procedures including the Lobmann teckhnique, the Lee
techrnicgue, and the Burch techrigque. A related idea is to pose the spood—
ing as an optimization problerm and employ a technigue such as sirmulatsd
armealing in an attermpt to find the "bast" zolution. This approach might
e considered as a network solution to the problem of defining a holo—
gr-aphic interconnect for another network probolem,

Al of the abowe inuvestigations will be dore through computsr simulation
lbwery an optimal approach is defined, 3 reasonakly large network con—
zigting of perhaps 64:64 nodes will be attempted.

Ancther goal will ke to investigate methods of producing more acourate
binary phase holograrms. A number of techhnigues for this exist. e will
imvestigate a photolithographic techricue, 2 photolithographic technigus
withy vacuurn deposition of @ dislectric coating, and, if possikle, photoh -
thography with reactive ion etcking.

Investigation of the incoherent ocptical interconnection methods will also
be dorne in the coming gear. A high—resolution filrm writer using laser
zcanning techhology will ke available ety Production of transpar—
ency masks via this instrument should ke relatively straightforward.




Figure Captions:

Fig. 1. Fattern of interconnection of the test subholograrm. The connec—
tion to the node in the ower left hazs a walue of 5 all other contec—
tions are either @ or 1.

Fig. 2. Holographic interconnection pattern of the test holograms — zero
phase (a2 and random phase el Mote the sswere spreading of the zero
bias light into the interconnection region.

Fig. 3. Caloulated interconnection pattern of the test holograms — zero
phase Car and random phase (bl Good agresrment with the optically gen—
erated interconrection patterns JFig. 2 iz noted, spart from the owverall
photographic intensity.

Figq. 4. Calculated interconmection pattern of a hinary phase hologram.
Comparison to the results of the kinary Sal

raplitude kologram ofigq. Sa
reveals greatly reduced stror from the hias light ardd improved diffrac—
tior etfficiency.
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